可惜的是,我们平时常用的测试运行时间的方法,并不是那么精确的。换句话说,想精确获取程序运行时间,不是那么容易的。也许你会想,程序不就是一条条指令
么,每一条指令序列都有固定执行时间,为什么不好算?真实情况下,我们的计算机并不是只运行一个程序的,进程的切换,各种中断,共享的多用户,网络流量,
高速缓存的访问,转移预测等,都会对计时产生影响。
可惜的是,在性能测量领域,我们有gprof,有intel的vtune,却缺少相应
的,广泛流传的参考文献。如果你希望能建立起自己的工具,或者对具体的测量方式感兴趣,那么本文也许会对你有帮助。我想,应该有很多人希望知道计时机制的
原理,因为针对不同的系统,环境,会有不同的解决方案。本文主要针对Linux和X86体系环境,主要思想来源于"Computer
System A Programmer's
Perspective",夹杂了一些自己的理解,并试图给出我自己写的一个通用测量工具,支持用户自配置。本文有时的对象是程序有时描述对象是进程,这个请自行理解,因为一个程序就是在一个进程里面执行的。
进程调度和模式切换
在介绍具体方法之前,先简单说几句。
对
于进程调度来讲,花费的时间分为两部分,第一是计时器中断处理的时间,也就是当且仅当这个时间间隔的时候,操作系统会选择,是继续当前进程的执行,还是切
换到另外一个进程中去。第二是进程切换时间,当系统要从进程A切换到进程B时,它必须先进入内核模式将进程A的状态保存,然后恢复进程B的状态。因此,这个切换过程是有内核活动来消耗时间的。具体到进程的执行时间,这个时间也包括内核模式和用户模式两部分,模式之间的切换也是需要消耗时间,不过都算在进程执行时间中了。
其实模式切换非常费时,这也是很多程序中都要采用缓冲区的原因,例如,如果每读一小段文件什么的就要调用一次
read之类的内核函数,那太受影响了。所以,为了尽量减少系统调用,或者说,减少模式切换的次数,我们向程序(特别是IO程序)中引入缓冲区概念,来缓
解这个问题。
一般来说呢,向处理器发送中断信号的计时器间隔通常是1-10ms,太短,切换太多,性能可能会变差,太长呢,如果在任务间切换频繁,又无法提供在同时执行多任务的假象。这个时间段,也决定了一些我们下面要分析的不同方法衡量时间的差异。
方法一:间隔计数
我
们都知道,Linux下有一个命令是专门提供一个进程的运行时间的,也就是time。time可以测量特定进程执行时所需消耗的时间及系统资源等,这个时
间还可以分内核时间和用户态时间两部分呈现给你。它是怎么做到的呢?其实很简单,操作系统本身就是用计时器来记录每个进程使用的累计时间,原理很简单,计
时器中断发生时,操作系统会在当前进程列表中寻找哪个进程是活动的,一旦发现,哟,进程A跑得正欢,立马就给进程A的计数值增加计时器的时间间隔(这也是
引起较大误差的原因,想想)。当然不是统一增加的,还要确定这个进程是在用户空间活动还是在内核空间活动,如果是用户模式,就增加用户时间,如果是内核模
式,就增加系统时间。
原理很简单吧?但是相信一点,越简单的东西,是不会越精确的,人品守恒,能量守恒,难度也当然会守恒了啊。下面就简
单分析一下,为啥这玩意精度不高吧。举个例子,如果我们有一个系统,计时器间隔为10ms,系统里面跑了一个进程,然后我们用这种方法分析时间,测出
70ms,想一想,实际会有几种结果?具体点,我们用这种方法对进程计时,在某个计时器中断时,系统发现,咦,有一个进程开始跑了,好,给进程的计数值加
上10ms。但是实际上呢,这个进程可能是一开始就跑起来了,也肯能是在中断的前1ms才开始跑的。不管是什么原因,总之中断时候它在跑,所以就得加
10ms。当中断发生时发现进程切换了,同理,可能是上一个中断之后1ms进程就切换了,也可能人家刚刚才切换。
所以呢,如果一个进程的
运行时间很短,短到和系统的计时器间隔一个数量级,用这种方法测出来的结果必然是不够准确的,头尾都有误差。不过如果程序的时间足够长,这种误差有时能够
相互弥补,一些被高估一些被低估,平均下来刚好,呵呵。从理论上,我们很难分析这个误差的值,所以一般只有程序到达秒的数量级时,用这种方式测试程序时间
才有意义。
说了半天,难道这方法没优点了?不,这个世界没有纯善,也没有纯恶。这方法最大的优点是,它的准确性不是非常依赖于系统负载。那什么方法依赖于系统负载呢?接下来我们会讲到:)
理论陈述结束,我想应该开始关注实现方法了吧。其实超级简单,两种方法:
直接调用time命令(一堆鸡蛋)
使用tms结构体和times函数
说说正经点的第二个方法吧。在Linux中,提供了一个times函数,原型是
clock_t times( struct tms *buf )
这个tms的结构体为
struct tms
{
clock_t tms_utime; // user time
clock_t tms_stime; // system time
clock_t tms_cutime; // user time of reaped children
clock_t tms_cstime; // system time of reaped children
}
怎么使用就不用这里教了吧?不过要说明一下的是,这里的cutime和cstime,都是对已经终止并回收的时间的累计,也就是说,times不能监视任何正在进行中的子进程所使用的时间。
方法二:周期计数
刚
才谈了半天间隔计数的不足之处,哪有不足,那就有弥补的方法,特别实在万能的Linux中:)
为了给计时测量提供更高的准确度,很多处理器还包含一个运行在时钟周期级别的计时器,它是一个特殊的寄存器,每个时钟周期它都会自动加1。这个周期计数器
呢,是一个64位无符号数,直观理解,就是如果你的处理器是1GHz的,那么需要570年,它才会从2的64次方绕回到0,所以你大可不必考虑"万一溢出
怎么办"此类问题。
看到这里,也许你会想,哇塞,很好很强大嘛,时钟周期,这都精确到小数点后面多少位来着了?这下无论是多快的用时多短
的程序,我们也都能进行时间测量了。Ohyeah。等等,刚才我们说过什么来着?守恒定律啊!功能强大的东西,其他方面必有限制嘛。看到上面的介绍,聪明
的你一定能猜出来这种方法的限制是什么了,那就是,hardware
dependent。首先,并不是每种处理器都有这样的寄存器的,其次,即使大多数都有,实现机制也不一样,因此,我们无法用统一的,与平台无关的接口来
使用它们。怎么办?这下,就要祭出上古传说中的神器:汇编了。当然,我们在这里实际用的是C语言的嵌入汇编:
void counter( unsigned *hi, unsigned *lo )
{
asm("rdtsc; movl %%edx,%0; movl %%eax, %1″
: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");
}
第一行的指令负责读取周期计数器,后面的指令表示将其转移到指定地点或寄存器。这样,我们将这段代码封装到函数中,就可以在需要测量的代码前后均加上这个函数即可。最后得到的hi和lo值都是两个,除了相减得到间隔值外,还要进行一些处理,在此先按下不表。
不得不提出的是,周期计数方式还有一个问题,就是我们得到了两次调用counter之间总的周期数,但我们不知道是哪个进程使用了这些周期,或者说处理器是在内核还是在用户模式中。还记得刚才我们讲间隔计数方式么?这玩意的好处就是它是操作系统控制给进程计时的,我们可以知道具体哪个进程,哪个模式。但是周期计数只测量经过的时间,他不管你是哪个进程使用的。所以,用周期计数的话,我们必须很小心。举个例子
double time()
{
start_counter();
p();
get_counter();
}
这样一段程序,如果机器的负载很重,会导致P运行时间很长,而其实P函数本身是不需要运行这么长时间的,而是上下文切换等过程将它的时间拖长了。
而且,转移预测(想一想,如果转移方向和目的预测错误)和高速缓存的命中率,对这个计数值也会有影响。通常情况下,为了减少高速缓存不命中给我们程序执行时间带来的影响,可以执行这样的代码:
double time_warm( void )
{
p();
start_counter();
p();
get_counter();
}
原因不用我再解释了吧?它让指令高速缓存和数据高速缓存都得到了warm-up。
好,接下来又有问题。如果我们的应用,是属于那种每次执行都希望访问新的数据的那种呢?在这种情况下,我们希望让指令高速缓存warm-up,而数据高速缓存不能warm-up,很明显,time_warm函数低估我们的运行时间了。让我们进行进一步修改:
double time_cold( void )
{
p();
clear_cache();
start_counter();
p();
get_counter();
}
注意,我们加入了一个清除数据缓存的函数。这个函数的具体实现很简单,依情况而定,比如举个例子
volatile int tmp;
static int dummy[N]; // N是你需要清理缓存的字节数
void clear_cache( void )
{
inti, sum = 0;
for( i=1;i<N;i++ )
dummy[i] = 2;
for( i=1;i<N;i++ )
sum += dummy[i];
tmp = sum;
}
具体原理很简单,我们在定义一个数组并在其上执行一个计算,计算过程中的数据会覆盖高速数据缓存中原有的数据。每一次的store和load都会让高速数据缓存cache这个数组,而定义为volatile的tmp则保证这段代码不会被优化。
这样做,是不是就万无一失了呢?不是的,因为大多数处理器,L2高速缓存是不分指令和数据的,这样clear_cache会让所有P的指令也被清除,只不过:L1缓存中的指令还会保留而已。
其实上面提到的诸多原因,都是我们不能控制的,我们无法控制让高速缓存去加载什么,不去加载什么,加载时去掉什么,保留什么。而且,这些误差通常都是会过高估计真实的运行时间。那么具体使用时,有没有什么办法来改善这种情况呢?有,就是The
K-Best Measurement
Scheme。这玩意其实很麻烦,所以我在具体实践中都不用它,附上一个文档,有兴趣的朋友可以下载下来看一下。
我不喜欢间隔计数的小适用范围,也不喜欢周期计数的麻烦性,相信读到这里的99%的读者也和我一种感受吧。OK,最后我们要介绍的,就是一个可移植性更好,相对较准确的方法。
方法三:gettimeofday函数计时
gettimeofday是一个库函数,包含在time.h中。它的功能是查询系统时钟,以确定当前的日期和时间。它很类似于刚才所介绍的周期计时,除了测量时间是以秒为单位,而不是时钟周期为单位的。原型如下:
struct timeval
{
long tv_sec;
long tv_usec;
}
int gettimeofday( struct timeval *tv, NULL )
这
个机制呢,具体的实现方式在不同系统上是不一样的,而且虽然披着一个usec(us)的老虎皮,其实没这么精确。具体的精确程度,是和系统相关的,比如在
Linux下,是用周期计数来实现这个函数的,所以和周期计数的精确度差不多,但是在Windows
NT下,使用间隔计数实现的,精确度就很低了(所以啊,万恶的ms啊)。
具体使用的时候,就是开始来一个gettimeofday( tvstart, NULL
),结束来一个gettimeofday( tvend, NULL
),完了sec域和usec域相减的差值就是计时时间。
如何,很方便吧?应该说在Linux下,这是最有效而方便的计时方式了。从测试情况看,精确度也不错。这种价格便宜量又足的东西嘛,大家可以随便多用。
总结
这次的总结很简单:没有一个计时方法是完美的,我们所要作的,就是理解本质后,在特定的系统上去寻找特定的好方法。
没有评论:
发表评论